报告题目:On lattice polarizable cubic fourfolds
报告人:杨松
报告时间:2021年5月14日(星期五) 10:00—11:30
报告地点:东九A座528学术报告厅
报告摘要:Hassett divisors of special cubic fourfolds have played fundamental roles in many studies of cubic fourfolds. In this talk, we extend the non-emptyness and irreducibility of Hassett divisors to the moduli spaces of M-polarizable cubic fourfolds for higher rank lattices M, and show that Fermat cubic fourfold is contained in every Hassett divisor. As applications, we obtain an algorithm to determine the irreducible components of the intersection of any two Hassett divisors and give new examples of rational cubic fourfolds. Moreover, we derive a numerical criterion for the algebraic cohomology of a cubic fourfold having an associated K3 surface. This is based on a joint work with Xun Yu.
报告人简介:杨松,2009年西南科技大学理学学士,2016年四川大学理学博士,2016年7月至今任职天津大学应用数学中心(现天津国家应用数学中心)讲师,主要研究方向为复几何与(非交换)代数几何,部分研究成果已被JPAA、AGAG、JNCG 、JMPA、TAMS和IMRN等10余个数学杂志接受发表,主持国家自然科学青年基金1项、天津市自然科学青年基金1项。
欢迎广大师生参加!
理学院
2021.5.12